Use Separate
Answer scripts for
each group

Undergraduate Examination 2019
Semester - III (CBCS)
Mathematics
Generic Elective Course: GEC-3
(Differential Equations and its applications)
Time: Three Hours

Full Marks: 60
Questions are of value as indicated in the margin.
Notations and symbols have their usual meanings.

Group-A (Marks: 40)

Answer any four questions.

1. a) Determine the differential equation, whose primitive is $x \cos \theta+y \sin \theta=5$, where θ is a parameter.
b) Solve the following differential equations:
i) $\left(x^{2}+1\right) \frac{d y}{d x}-2 x y=x\left(x^{4}+2 x^{2}+1\right) \cos x$,
ii) $\left(x^{2} y^{3}+2 x y\right) d y=d x$.
2. a) Show that $\left\{x\left(x^{2}-y^{2}\right)\right\}^{-1}$ is an integrating factor of the equation $\left(x^{2}+y^{2}\right) d x-2 x y d y=0$
b) Solve the following differential equations:
i) $\frac{d y}{d x}=\sin (x+y)$,
ii) $\left(y^{2}+2 x^{2} y\right) d x+\left(2 x^{3}-x y\right) d y=0$. $3+4$
3. a) Find the equation of the family of curves, that cut a system of concentric circles $x^{2}+y^{2}=a^{2}$ at an angle 45°.
b) Find the orthogonal trajectories of the following families of curves:
i) $\quad r(1+\cos \theta)=2 a$,
ii) $x^{2}+y^{2}+2 \lambda x+9=0$, where λ is a parameter.
4. a) Solve the differential equation $y\left\{x(2 x+1) p-y p^{2}\right\}=2 x^{3}, p=\frac{d y}{d x}$.
b) Solve $y=p x+\sqrt{a^{2} p^{2}+b^{2}}$ and obtain the singular solution, if any.
c) Reduce the differential equation $y=2 p x+y^{2} p^{3}$ by substituting $y^{2}=v$ to Clairaut's form and then solve it.
5. a) Show that linearly independent solutions of $y^{\prime \prime}-2 y^{\prime}+2 y=0$ are $e^{x} \sin x$ and $e^{x} \cos x$. What is the general solution? Find the particular solution $y(x)$ with the conditions $y(0)=1$ and $y^{\prime}(0)=-3$.
b) i) Solve $\frac{d^{2} y}{d x^{2}}-9 \frac{d y}{d x}+20 y=x^{2} e^{3 x}$.
ii) Solve $\frac{d^{2} y}{d x^{2}}+4 y=\sin 2 x$.
6. a) Solve $x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+y=\sin \left(\log _{e} x^{2}\right)$.
b) Apply the method of variation of parameters to solve $\frac{d^{2} y}{d x^{2}}+y=\cos x$.
c) Solve the equations $\frac{d x}{d t}=-w y$ and $\frac{d y}{d t}=w x$ and show that the point (x, y) lies on a circle.

Group-B (Marks: 20)

Answer any two questions.
$10 \times 2=20$
7. a) Form a partial differential equation (PDE) by eliminating the arbitrary function ϕ from $z=e^{a x+b y} \phi(a x-b y), z=z(x, y)$.
b) Give one example of each of the following exclusive types of first order PDE in two independent variables:
i) linear ii) semilinear iii) quasilinear iv) nonlinear.

2
c) Find the general solution of the PDE $\frac{\partial z}{\partial x}+2019 \frac{\partial z}{\partial y}=2020$. Hence, show that the Cauchy problem $\frac{\partial z}{\partial x}+2019 \frac{\partial z}{\partial y}=2020, z(x, y)=2020$ on the line $2019 x-y=0$ has no solution.
8. a) Find the equation of the integral surface of the PDE

$$
\begin{equation*}
2 y(z-3) \frac{\partial z}{\partial x}+(2 x-z) \frac{\partial z}{\partial y}=y(2 x-3) \tag{5}
\end{equation*}
$$

which passes through the circle $z=0, x^{2}+y^{2}=2 x$.
b) Using Charpit's method, find a complete integral of $x^{2}\left(\frac{\partial z}{\partial x}\right)^{2}+y^{2}\left(\frac{\partial z}{\partial y}\right)^{2}=4$.
9. a) Show that the Partial differential equations $x \frac{\partial z}{\partial x}=y \frac{\partial z}{\partial y}$ and $z\left(x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}\right)=2 x y$ are compatible and find the one-parameter family of common solutions.
b) What do you mean by a singular integral as applied to the solution of first order nonlinear PDE $f\left(x, y, z, \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}\right)$?
Hence, find the singular integral of $z=x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}+3\left(\frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y}\right)^{1 / 3}$.

